Features
1-Phase 230 V
Over \& Under voltage monitoring relays
71.11.8.230.0010

- Fixed Over \& Under voltage detection
- Link selectable 5 or 10 minute lock-out delay
71.11.8.230.1010
- Adjustable Over \& Under voltage detection
- Switch selectable 5 or 10 minute lock-out delay
- 35 mm rail (EN 50022) mounting
- LED indication
- Positive safety logic (healthy conditions output relay energised)
71.11.8.230.0010

- Fixed - Over/Under voltage limits,
(0.75 ...1.2) U_{N} respectivity
- Link selectable - 5 min or 10 min delay
71.11.8.230.1010
- Detects and trips on out-of-limits L-N voltage, and protects against excessive "starts/hour" through "power-on" and "lock-out" time delays.
- Typical applications - protection of compressor motors and high pressure discharge lamp circuitry.

Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC

Rated load AC 1	VA
Rated load AC15 (230 V AC)	VA

Single phase motor rating (230 VAC) kW
Breaking capacity $\mathrm{DC} 1: 30 / 110 / 220 \mathrm{~V} \quad \mathrm{~A}$
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact mater
Supply specification

Nominal voltage $\left(U_{N}\right)$	V AC $(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	VA $(50 \mathrm{~Hz}) / W$
Operating range	AC
	DC

Technical data

Electrical life at rated load AC1 cycles

Detection levels
Switch-on lock-out time/reaction time

Fault memory
Electrical isolation: Supply to Measuring circuits
Ambient temperature range ${ }^{\circ} \mathrm{C}$

Protection category
Approvals (according to type)

- Adjustable - symmetrical Over/Under voltage limits adjustable between $\pm 5 \%$ to $\pm 20 \% U_{N}$
- Switch selectable - 5 min or 10 min delay

71 Series - Moniłoring relays 10 A

Features

71.31.8.400.1010

3 - Phase 400 V
Over \& Under voltage monitoring relay
71.31.8.400.1010

- Adjustable Over \& Under voltage detection
- Switch selectable 5 or 10 minute lock-out delay
- 35 mm rail (EN 50022) mounting
- LED indication
- Positive safety logic (healthy conditions output relay energised)

Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load AC1 VA

Rated load AC15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW

Breaking capacity DC1: 30/110/220 V A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact mate
Supply specification

Nominal voltage $\left(U_{N}\right)$	V AC $(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / W$
Operating range	AC
	DC

Technical data

Electrical life at rated load AC1 cycles
Detection levels $\quad V(50 / 60 \mathrm{~Hz})$
Switch-on lock-out time/reaction time
Fault memory
Electrical isolation: Supply to Measuring circuits
Ambient temperature range ${ }^{\circ} \mathrm{C}$
Protection category

Approvals (according to type)

- Adjustable - symmetrical Over/Under voltage limits adjustable between $\pm 5 \%$ to $\pm 20 \% \mathrm{U}_{\mathrm{N}}$
- Switch selectable - 5 min or 10 min delay
- Delects and trips on out-of-limits L-L voltage, and protects against excessive "starts/hour" through "power-on" and "lock-out" time delays.
- Typical applications - protection of compressor motors and high pressure discharge lamp circuitry.

A

$250 / 400$
2,500

-

$10 / 0.3 / 0$
$300(5 / 5)$
AgCdO
400
-
$(0.8 \ldots 1.2) \mathrm{U}_{\mathrm{N}}$
$100 \cdot 10^{3}$
Adjustable $(\pm 5 \ldots \pm 20) \% U_{N}$
(5 or 10) $\mathrm{min} /<0.5 \mathrm{~s}$
-
None - circuits are electrically common C
-

71 Series - Monitoring relays 10 A

Features

3 - Phase 400 V - Line monitoring relays
71.31.8.400.1021

- Over \& Under voltage trip on-delay
- Fault memory
71.31.8.400.2000
- Phase asymmetry
- Phase rotation
- Phase loss
- 35 mm rail (EN 50022) mounting
- LED indication
- Positive safety logic (healthy conditions output relay energised)

- 3 phase 400 V - line voltage monitoring
- Detects over and under voltage
- Adjustable trip on-delay
- Switch selectable fault memory
- Under voltage trip level (0.8 $\ldots 0.95) \mathrm{U}_{\mathrm{N}}$ Adjustable
- Over voltage trip level $1.15 \mathrm{U}_{\mathrm{N}}$ - Fixed
- Trip delay time ($0.1 . .12$)s sadjustable
- Fault memory, switch selectable
- Fault acknowledgement by switch manipulation from ON to OFF and back to ON or power down

71.31.8.400.2000

- 3 phase asymmetry monitoring
- Phase rotation monitoring
- Phase loss monitoring
- Asymmetry between phases (-5... -20)\% U U_{N} adjustable
- Detection of the supply voltage

U to A1 (1) and/or A2 (5) > $1.11 U_{N}$

Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load AC1
Rated load AC15 (230 V AC)
Single phase motor rating (230 VAC) kW
Breaking capacity DC $1: 30 / 110 / 220 \mathrm{~V}$ A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact mater
Supply specification

Nominal voltage $\left(U_{N}\right)$	V VAC $(50 / 60 \mathrm{~Hz})$
	VDC
Rated power AC/DC	VA $(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC

Technical data

| Electrical life at rated load ACl | cycles |
| :--- | ---: | :--- |
| Detection level $\quad \mathrm{U}_{\text {min }} / \mathrm{U}_{\text {max }} /$ Asymmetry | |

Trip on-delay/reaction time
Fault memory - selectable
Electrical isolation: Supply to Measuring circuits
Ambient temperature range ${ }^{\circ} \mathrm{C}$
Protection category

Approvals (according to type)

71 Series - Moniłoring relays 10 A

Features

Universal voltage or current detecting and monitoring relay

71.41.8.230.1021 - Voltage monitoring
71.51.8.230.1021-Current monitoring

- Zero voltage memory according to EN 60204-7-5
- Programmable for DC or AC detection level: range detecting: upper and lower value upper set point minus hysteresis range (5...50)\% for switch on lower set point plus hysteresis range (5...50)\% for switch on
- Fault memory
- Electrical isolation between measuring and supply circuits
- Immune to supply interruptions of < 200 ms
- Wide detecting range:
voltage: DC (15...700)V, AC (15...480)V
- 35 mm rail (EN 50022) mounting

Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltageV AC
Rated load AC1 VA

Rated load AC15 (230 V AC)
Single phase motor rating (230 VAC$)$
Breaking capacity DC1: 30/110/220 V A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact ma
Supply specification

Nominal voltage $\left(U_{N}\right)$	V AC $(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	VA $(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC

Technical data

Electrical life at rated load AC1 cycles
Detection levels AC(50/60 Hz)/DC
Switch-off/reaction/Start delay
Switch-on level of the detecting level \%
Fault memory - programmable
Electrical isolation: Supply to Measuring circuits
Ambient temperature range
Protection category
Approvals (according to type)
71.41.8.230.1021

71.51.8.230.1021

- Programmable universal current monitoring relay
Usable with current transformer 50/5, 100/5, $150 / 5,250 / 5,300 / 5,400 / 5$ or $600 / 5$
- AC/DC voltage detection - adjustable
- AC ($50 / 60 \mathrm{~Hz}$) (15...480)V
- AC/DC current detection - adjustable
- $\mathrm{AC}(50 / 60 \mathrm{~Hz})(0.1 \ldots 10) \mathrm{A}$ with current transformer to 600A
- DC (0.1...10)A
- Switch-on hysteresis (5...50)\%
- Switch-off delay (0.1...12)s
- Start delay (0.1 ...20) s

$\begin{aligned} U= & 230 \mathrm{VAC} \\ & (50 / 60 \mathrm{~Hz})\end{aligned}$
230 V AC
 $=(50 / 60 \mathrm{~Hz}$ programmable U AC: $(15 \ldots 480) \mathrm{V}$ DC: $(15 \ldots . .700) V$
($50 / 60 \mathrm{~Hz}$) programmable
I AC: $(0.1 \ldots 10)$
$=600 \mathrm{~A}$ DC: $(0.1 \ldots 10) \mathrm{A}$

$0.1 \mathrm{~s} \quad 0.1 \mathrm{~s}$ 12 s 20 s Memory
Memory
- DC (15...700)V
- Switch-on hysteresis (5...50)\%
- Switch-off delay (0.1...12)s

- Programmable universal voltage monitoring relay
\square Memory
.
A
-

2

1 CO (SPDT)
10/15
250/400
2,500
\square
0
10/0.3/0.12
0.5
10
\square
\square

10/0.3/0.12
$\frac{\mathrm{AgCdO}}{2}$
\square
\square
$10 / 0.3 / 0.12$
$300(5 / 5)$
C

71 Series - Moniłoring relays 10 A

Features

Thermistor temperature sensing relays for

 industrial applications71.91-1 Pole, without fault memory
71.92-2 Pole, with fault memory

- Overload protection according EN 60204-7-3
- Positive safety logic - make contact opens if the measured value is outside of the acceptable range
- Industry standard module
- LED status indication
- 35 mm rail (EN 50022) mounting

71.91

71.92

Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load AC1

Rated load AC15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW

Breaking capacity DC1: 30/110/220 V A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact material

Supply specification

Nominal voltage $\left(U_{N}\right)$	VAC $(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{WC}$
Operating range	AC

Technical data

Electrical life at rated load ACl cycles
PTC detecting: Short circuit/Temperature OK
Reset/PTC bre
Fault memory - switch selectable
Electrical isolation: Supply to Measuring circuits
Ambient temperature range ${ }^{\circ} \mathrm{C}$
Protection category

Approvals (according to type)
71.91.x.xxx. 0300

- Thermistor relay
- 1 Pole normally open contact
- 24 V AC/DC, or 230 V AC supply
- Temperature detection with PTC
- PTC short circuit detection
- PTC wire breakage detection
71.92.x.xxx. 0001

- Thermistor relay with fault memory
- 2 Pole changeover contacts
. $24 \mathrm{~V} \mathrm{AC/DC}$,or 230 V AC supply
- Temperature detection with PTC
- Fault memory - switch selectable
- Reset by Reset button or supply interruption
- PTC short circuit detection
- PTC wire breakage detection

Ordering information

Example: Universal voltage monitoring relay with LCD display for AC/DC voltage detection, 1 CO (SPDT) contact rated 10 A 250, supply voltage 230 V , programmable delay time and fault memory.

$1=1$ NO (SPST-NO) type 71.91
$2=2$ CO (DPDT) type 71.92
Supply version
$0=A C(50 / 60 \mathrm{~Hz}) / D C$
8 = AC ($50 / 60 \mathrm{~Hz}$)
Supply voltage
$024=24 \mathrm{~V}$ AC/DC
$230=230 \mathrm{~V}$
$400=400 \mathrm{~V}$

Additional functions

$0=$ Basic function
1 = Adjustable detection value
2 = Adjustable: Asymmetry, phase loss, phase rotation

Technical data

Functions

Monitoring relay	Types												Times			Supply voltage			Module width		Contact conf.
											$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{\square}{2} \\ & \frac{.0}{9} \end{aligned}$					$\begin{aligned} & \text { U } \\ & \text { U } \\ & \text { d } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { U } \\ & > \\ & \text { O} \\ & \text { Ǹ } \end{aligned}$	$\begin{aligned} & u \\ & ষ \\ & > \\ & \text { ৪ } \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \stackrel{0}{3} \\ & \varepsilon \\ & \varepsilon \\ & \stackrel{N}{m} \end{aligned}$	$\begin{aligned} & \frac{0}{\square} \\ & \dot{B} \\ & \varepsilon \\ & \varepsilon \\ & \sim \\ & \tilde{N} \end{aligned}$	
71.11.8.230.0010	-												-				-		-		$\begin{aligned} & 1 \mathrm{CO} \\ & \text { SPDT } \end{aligned}$
71.11.8.230.1010	-										\bullet		-				-		-		$\begin{aligned} & 1 \text { CO } \\ & \text { SPDT } \end{aligned}$
71.31.8.400.1010		-									-		-					-	-		$\begin{aligned} & 1 \text { CO } \\ & \text { SPDT } \end{aligned}$
71.31.8.400.1021		-									-	-		-				-	-		$\begin{aligned} & 1 \text { CO } \\ & \text { SPDT } \end{aligned}$
71.31.8.400.2000			-	-	-						\bullet							-	-		$\begin{aligned} & 1 \text { CO } \\ & \text { SPDT } \end{aligned}$
71.41.8.230.1021	-					\bullet	-				-	-		-			-		-		$\begin{aligned} & 1 \text { CO } \\ & \text { SPDT } \end{aligned}$
71.51.8.230.1021								-	\bullet		\bullet	-		-	-		-		-		$\begin{aligned} & 1 \text { CO } \\ & \text { SPDT } \end{aligned}$
71.91.0.024.0300										-	-					-				-	$\begin{gathered} \text { I NO } \\ \text { SPST-NO } \end{gathered}$
71.91.8.230.0300										-	-						-			-	$\begin{aligned} & \text { I NO } \\ & \text { SPST-NO } \end{aligned}$
71.92.0.024.0001										-	\bullet	\bullet				-				-	$\begin{aligned} & 2 \mathrm{CO} \\ & \text { DPDT } \end{aligned}$
71.92.8.230.0001										-	-	-					-			-	$\begin{aligned} & 2 \text { CO } \\ & \text { DPDT } \end{aligned}$
Current transformer		ce as	qui																		

Explanation of relay marking and LED/LCD display

Monitoring relay without LCD-dispaly

ON	LED green steady light: supply voltage is on and measuring system is active.
DEF	Default: the detected value is outside of the acceptable range (asymmetric is shown by the LED ASY). LED red flashing: delay time is running, see the function diagram. LED red steady light: output relay is off, contact $11-14(6-2)$ is open.
ASY	Phase asymmtery is outside of the predefined range. LED steady light: output relay is turned off, contact $11-14(6-2)$ is open.
LEVEL	Selected range as \% value.
TIME	Delay time min (minutes) or s (seconds).
MEMORY ON	Fault memory switched on: the state of the output relay after the accurrence of a fault -contact 11 -14 (6-2) open- will be maintained, monitored value returns to within acceptable limits. Fault reset is made by switch manipulation from ON to OFF to ON, or by power down (71.31.8.400. $1021 \& 71.92 . x . x x x .0001)$, or by operating of the "RESET" $(71.92 . x . x x x .0001)$.
MEMORY OFF	Fault memory turned off: the sate of the output contatcts will only remain in the "fault" condition -contact $11-41(6-2)$ open- while the monitored value is outside of the acceptable limits. When the monitored value returns within the acceptable limits the contact will revert to the energised state. Monitored equipment will start again automatically.

Monitoring relay with LCD-display

SET/RESET	Relay 71.41 and 71.51. Sets and resets the programmable values - see operating in the packing.		
SELECT	Relay 71.41 and 71.51. Selects the desired parameter for programming -see operating instructions.		
DEF	Default, LED red steady or flashing.		
PROG Modus	Enter the programming mode by simultaneously pressing the buttons "SET/RESET" and "SELECT" for 3 seconds. The word "prog" is shown for 1 second. "SELECT" allows the choise of "AC" or "DC", and is confirmed with "SET/RESET". Successively pressing the button "SELECT" brings up the choises of Up, or Up ${ }_{\mathrm{L}}$. The appropriate choise is made by pressing the "SET/RESET" button. The next step will program the appropriate values and the selection of the fault memory function (which is selected with a "YES" or "NO"). If all programming steps are completed the display will read "end".		
Short programmin instruction	After repeatedly pressing the "SET/RESET" button the measured value will be displayed, or " 0 " appears if nothing is connected to Z1 and Z2 (5 and 9). If the programming is brocken off before "end" is shown in the display the previous program will remain unchanged after an interruption of the supply voltage.		
Program query	Pushing the "SELECT" button for at least 1 second, enters the "program inquiry mode". The programmed mode and the values are shown on the repeated pressing of the "SELECT" button.		
Flashing M (memory)	Fault memory has had effect (fault acknowledgement and reset is made by a 3 second press of the "SET/RESET" button).		
LCD-display	$\begin{array}{ll} \mathrm{V} & =\text { volt } \\ \mathrm{A} & =\text { amp } \\ \text { Up } & =\text { upper limit (with hysteresis in down direction) } \\ \text { Lo } & =\text { lower limit (with hysteresis in up direction) } \\ \text { UPLo } & =\text { upper and lower limit - range detecting } \end{array}$	Level= value Hys = hysteresis $M=$ memory (fault) Yes = yes - with memory no $=$ no- without memory	$t_{1}=T_{1}$ - time during which short-time fulctuations are not taken into account $t_{2}=T_{2}-($ monitoring relay 71.51) the time during which inrush currents are not taken into a account

LED/LCD status announcement/advice

Type	Starting mode	Normal operation	Abnorm	al mode	Reset
71.11.8.230.0010 71.11.8.230.1010 71.31.8.400.1010	After connecting $\mathrm{T}=5$ or 10 min 11-14 open	\square Normal operation Set point is OK 11-14 is closed	\square Time T runs Set point is immaterial $11-14$ is open Will close after T , if set point is OK	After expiry of T Set point is not OK $11-14$ is open Will close, if set point is OK	
71.31.8.400.1021 Memory OFF		\square Normal operation Set point is OK \square $11-14$ is closed	10. Time Truns, Set point is not OK 11-14 is closed	After expiry of T Set point is not OK $11-14$ is open Will close, if set point is OK	
$\begin{aligned} & \text { 71.31.8.400.1021 } \\ & \text { Memory ON } \\ & \square \square-\mathrm{ON} \\ & \square \square \mathrm{OFF} \end{aligned}$		\square Normal operation Set point is OK 11-14 is closed	10 Th Time Truns, Set point is not OK 11-14 is closed	\square After expiry of T Set point is not OK \square $11-14$ is open Will not close at RESET	\square After expiry of T Set point is OK 11-14 is open Will close at RESET
71.31.8.400.2000		\square Normal operation Set point is OK 11-14 is closed	\square Supply voltage to A1 (1) and / or A2(5) is missing 11-14 is open, Will close if supply voltage restored and set point OK Incorrect phase \square rotation or phase failure or voltage A 1 (1) and/ot A2(5) is $>1.11 \mathrm{U}_{\mathrm{N}}$ 11-14 is open Will close, if set point is OK	\square Phase asymmetry \square $11-14$ is open \square Will close, if set point is OK	
71.41.8.230.1021 Memory OFF		Measured value displayed \square Normal operation Set point is OK 11-14 is closed	Measured value displayed ППП Time Truns, Set point is not OK 11-14 is closed	Measured value displayed After expiry of T Set point is not OK 11-14 is open Will close, if set point is OK	
71.41.8.230.1021 Memory ON		Measured value displayed \square Normal operation Set point is OK 11-14 is closed	Measured value displayed Time T runs, Set point is not OK $11-14$ is closed	M in the display flashes Measured value displayed Affer expiry of T Set point is not OK 11-14 is open Will not close at RESET	M in the display - static Measured value displayed After expiry of T Set point is OK 11-14 is open Will close at RESET
71.51.8.230.1021 Memory OFF	Measured value displayed \square Time T2 runs, Set point immaterial 11-14 is closed	Measured value displayed \square Normal operation Set point is OK 11-14 is closed	Measured value displayed Time T runs, Set point is not OK 11-14 is closed	Measured value displayed After expiry of T Set point is not OK 11-14 is open Will close, if set point is OK	
$\begin{aligned} & \text { 71.51.8.230.1021 } \\ & \text { Memory ON } \end{aligned}$	Measured value displayed \square Time T2 runs, Set point immaterial 11-14 is closed	Measured value displayed \square Normal operation Set point is OK 11-14 is closed	Measured value displayed ППП Time T runs, Set point is not OK 11-14 is closed	M in the display flashes Measured value displayed \square After expiry of T Set point is not OK 11-14 is open Will not close at RESET	M in the display - static Measured value displayed After expiry of T Set point is OK 11-14 is open Will close at RESET
71.91.x.xxx. 0300		\square Normal operation Set point is OK 11-14 is closed	\square Temperature to high or PTC line break or PTC short circuit 11-14 is open Will close, if set point is OK		
$\text { 71.92.x.xxx. } 0001$ Memory OFF		\square Normal operation Set point is OK 11-14 is closed	Temperature to high or PTC line break or PTC short circuit 11-14 is open Will close, if set point is OK		
$\text { 71.92.x.xxx. } 0001$ Memory ON		\square Normal operation \square Set point is OK 11-14 is closed	Temperature to high or PTC line break or PTC short circuit 11-14 is open		Temperature is OK \square $11-14$ is open Will close at RESET

Functions

Functions

Functions

Type 71.51.8.230.1021		Switch off I_{Lo} - mode If the monitored value is less than the lower- limit and, time T_{1} has expired. I_{Up} - mode If the monitored value is higher than the upper limit, and time T_{1} has expired. $\mathrm{I}_{\mathrm{L} \mathrm{O}} \mathrm{I}_{\mathrm{Up}}$ - mode If the monitored value of voltage is outside of the upper or lower limits, and time T_{1} has expired. Inrush current < T2 is ignored Current dips < T1 do not result in output relay switching off. Switch on I_{Lo} or I_{Up} - modes When passing the hysteresis value. $\mathrm{I}_{\mathrm{Lo}} \mathrm{I}_{\mathrm{Up}}$ - mode When passing the $\mathrm{I}_{\mathrm{L} \text { o }}$ or I_{Up} value. RESET MEMORY Pushing "SET/RESET" $>1 \mathrm{sec}$. C = output contact Normally open 11-14 (6-2) closed.
Type 71.91.x.xxx. 0300		Switch off - Thermistor line break - Over temperature $R_{\text {PTC }}>(2.5 \ldots 3.6) \mathrm{k} \Omega$, - Thermistor line short circuit ($\mathrm{R}_{\text {PTC }}<20 \Omega$) - Loss of supply Switch on Temperature within limits $R_{\text {PTC }}>(1.0 \ldots 1.5) \mathrm{k} \Omega$ on power-up. (1...1.5) $\mathrm{k} \Omega$ on cooling. C = output contact Normally open 11-14 Closed when temperature within limits.

Functions

